3.1.23 \(\int \frac {x^3 (d+e x)}{(d^2-e^2 x^2)^{7/2}} \, dx\) [23]

Optimal. Leaf size=90 \[ \frac {x^2 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {2 d+3 e x}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x}{5 d^2 e^3 \sqrt {d^2-e^2 x^2}} \]

[Out]

1/5*x^2*(e*x+d)/e^2/(-e^2*x^2+d^2)^(5/2)+1/15*(-3*e*x-2*d)/e^4/(-e^2*x^2+d^2)^(3/2)+1/5*x/d^2/e^3/(-e^2*x^2+d^
2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {833, 792, 197} \begin {gather*} \frac {x^2 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {2 d+3 e x}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x}{5 d^2 e^3 \sqrt {d^2-e^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(x^2*(d + e*x))/(5*e^2*(d^2 - e^2*x^2)^(5/2)) - (2*d + 3*e*x)/(15*e^4*(d^2 - e^2*x^2)^(3/2)) + x/(5*d^2*e^3*Sq
rt[d^2 - e^2*x^2])

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 792

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a*(e*f + d*g) - (
c*d*f - a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1))), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(2*a*c*(p + 1)),
Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ[p, -1]

Rule 833

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 - 1)*(a + c*x^2)^(p + 1)*((a*(e*f + d*g) - (c*d*f - a*e*g)*x)/(2*a*c*(p + 1))), x] - Dist[1/(2*a*c*(p + 1)),
Int[(d + e*x)^(m - 2)*(a + c*x^2)^(p + 1)*Simp[a*e*(e*f*(m - 1) + d*g*m) - c*d^2*f*(2*p + 3) + e*(a*e*g*m - c*
d*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && GtQ
[m, 1] && (EqQ[d, 0] || (EqQ[m, 2] && EqQ[p, -3] && RationalQ[a, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rubi steps

\begin {align*} \int \frac {x^3 (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx &=\frac {x^2 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {\int \frac {x \left (2 d^3+3 d^2 e x\right )}{\left (d^2-e^2 x^2\right )^{5/2}} \, dx}{5 d^2 e^2}\\ &=\frac {x^2 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {2 d+3 e x}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {\int \frac {1}{\left (d^2-e^2 x^2\right )^{3/2}} \, dx}{5 e^3}\\ &=\frac {x^2 (d+e x)}{5 e^2 \left (d^2-e^2 x^2\right )^{5/2}}-\frac {2 d+3 e x}{15 e^4 \left (d^2-e^2 x^2\right )^{3/2}}+\frac {x}{5 d^2 e^3 \sqrt {d^2-e^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.29, size = 82, normalized size = 0.91 \begin {gather*} \frac {\sqrt {d^2-e^2 x^2} \left (-2 d^4+2 d^3 e x+3 d^2 e^2 x^2-3 d e^3 x^3+3 e^4 x^4\right )}{15 d^2 e^4 (d-e x)^3 (d+e x)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(-2*d^4 + 2*d^3*e*x + 3*d^2*e^2*x^2 - 3*d*e^3*x^3 + 3*e^4*x^4))/(15*d^2*e^4*(d - e*x)^3*(
d + e*x)^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(177\) vs. \(2(78)=156\).
time = 0.07, size = 178, normalized size = 1.98

method result size
gosper \(-\frac {\left (-e x +d \right ) \left (e x +d \right )^{2} \left (-3 e^{4} x^{4}+3 d \,e^{3} x^{3}-3 d^{2} x^{2} e^{2}-2 d^{3} e x +2 d^{4}\right )}{15 d^{2} e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}\) \(77\)
trager \(-\frac {\left (-3 e^{4} x^{4}+3 d \,e^{3} x^{3}-3 d^{2} x^{2} e^{2}-2 d^{3} e x +2 d^{4}\right ) \sqrt {-e^{2} x^{2}+d^{2}}}{15 d^{2} e^{4} \left (-e x +d \right )^{3} \left (e x +d \right )^{2}}\) \(79\)
default \(e \left (\frac {x^{3}}{2 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {3 d^{2} \left (\frac {x}{4 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {d^{2} \left (\frac {x}{5 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {\frac {4 x}{15 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}+\frac {8 x}{15 d^{4} \sqrt {-e^{2} x^{2}+d^{2}}}}{d^{2}}\right )}{4 e^{2}}\right )}{2 e^{2}}\right )+d \left (\frac {x^{2}}{3 e^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}-\frac {2 d^{2}}{15 e^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}\right )\) \(178\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x,method=_RETURNVERBOSE)

[Out]

e*(1/2*x^3/e^2/(-e^2*x^2+d^2)^(5/2)-3/2*d^2/e^2*(1/4*x/e^2/(-e^2*x^2+d^2)^(5/2)-1/4*d^2/e^2*(1/5*x/d^2/(-e^2*x
^2+d^2)^(5/2)+4/5/d^2*(1/3*x/d^2/(-e^2*x^2+d^2)^(3/2)+2/3*x/d^4/(-e^2*x^2+d^2)^(1/2)))))+d*(1/3*x^2/e^2/(-e^2*
x^2+d^2)^(5/2)-2/15*d^2/e^4/(-e^2*x^2+d^2)^(5/2))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 122, normalized size = 1.36 \begin {gather*} \frac {x^{3} e^{\left (-1\right )}}{2 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}}} + \frac {d x^{2} e^{\left (-2\right )}}{3 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}}} - \frac {3 \, d^{2} x e^{\left (-3\right )}}{10 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}}} - \frac {2 \, d^{3} e^{\left (-4\right )}}{15 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}}} + \frac {x e^{\left (-3\right )}}{10 \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}}} + \frac {x e^{\left (-3\right )}}{5 \, \sqrt {-x^{2} e^{2} + d^{2}} d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

1/2*x^3*e^(-1)/(-x^2*e^2 + d^2)^(5/2) + 1/3*d*x^2*e^(-2)/(-x^2*e^2 + d^2)^(5/2) - 3/10*d^2*x*e^(-3)/(-x^2*e^2
+ d^2)^(5/2) - 2/15*d^3*e^(-4)/(-x^2*e^2 + d^2)^(5/2) + 1/10*x*e^(-3)/(-x^2*e^2 + d^2)^(3/2) + 1/5*x*e^(-3)/(s
qrt(-x^2*e^2 + d^2)*d^2)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 160 vs. \(2 (74) = 148\).
time = 3.89, size = 160, normalized size = 1.78 \begin {gather*} -\frac {2 \, x^{5} e^{5} - 2 \, d x^{4} e^{4} - 4 \, d^{2} x^{3} e^{3} + 4 \, d^{3} x^{2} e^{2} + 2 \, d^{4} x e - 2 \, d^{5} + {\left (3 \, x^{4} e^{4} - 3 \, d x^{3} e^{3} + 3 \, d^{2} x^{2} e^{2} + 2 \, d^{3} x e - 2 \, d^{4}\right )} \sqrt {-x^{2} e^{2} + d^{2}}}{15 \, {\left (d^{2} x^{5} e^{9} - d^{3} x^{4} e^{8} - 2 \, d^{4} x^{3} e^{7} + 2 \, d^{5} x^{2} e^{6} + d^{6} x e^{5} - d^{7} e^{4}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

-1/15*(2*x^5*e^5 - 2*d*x^4*e^4 - 4*d^2*x^3*e^3 + 4*d^3*x^2*e^2 + 2*d^4*x*e - 2*d^5 + (3*x^4*e^4 - 3*d*x^3*e^3
+ 3*d^2*x^2*e^2 + 2*d^3*x*e - 2*d^4)*sqrt(-x^2*e^2 + d^2))/(d^2*x^5*e^9 - d^3*x^4*e^8 - 2*d^4*x^3*e^7 + 2*d^5*
x^2*e^6 + d^6*x*e^5 - d^7*e^4)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 165 vs. \(2 (78) = 156\).
time = 7.45, size = 337, normalized size = 3.74 \begin {gather*} d \left (\begin {cases} - \frac {2 d^{2}}{15 d^{4} e^{4} \sqrt {d^{2} - e^{2} x^{2}} - 30 d^{2} e^{6} x^{2} \sqrt {d^{2} - e^{2} x^{2}} + 15 e^{8} x^{4} \sqrt {d^{2} - e^{2} x^{2}}} + \frac {5 e^{2} x^{2}}{15 d^{4} e^{4} \sqrt {d^{2} - e^{2} x^{2}} - 30 d^{2} e^{6} x^{2} \sqrt {d^{2} - e^{2} x^{2}} + 15 e^{8} x^{4} \sqrt {d^{2} - e^{2} x^{2}}} & \text {for}\: e \neq 0 \\\frac {x^{4}}{4 \left (d^{2}\right )^{\frac {7}{2}}} & \text {otherwise} \end {cases}\right ) + e \left (\begin {cases} - \frac {i x^{5}}{5 d^{7} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}} - 10 d^{5} e^{2} x^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}} + 5 d^{3} e^{4} x^{4} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {x^{5}}{5 d^{7} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}} - 10 d^{5} e^{2} x^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}} + 5 d^{3} e^{4} x^{4} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(e*x+d)/(-e**2*x**2+d**2)**(7/2),x)

[Out]

d*Piecewise((-2*d**2/(15*d**4*e**4*sqrt(d**2 - e**2*x**2) - 30*d**2*e**6*x**2*sqrt(d**2 - e**2*x**2) + 15*e**8
*x**4*sqrt(d**2 - e**2*x**2)) + 5*e**2*x**2/(15*d**4*e**4*sqrt(d**2 - e**2*x**2) - 30*d**2*e**6*x**2*sqrt(d**2
 - e**2*x**2) + 15*e**8*x**4*sqrt(d**2 - e**2*x**2)), Ne(e, 0)), (x**4/(4*(d**2)**(7/2)), True)) + e*Piecewise
((-I*x**5/(5*d**7*sqrt(-1 + e**2*x**2/d**2) - 10*d**5*e**2*x**2*sqrt(-1 + e**2*x**2/d**2) + 5*d**3*e**4*x**4*s
qrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (x**5/(5*d**7*sqrt(1 - e**2*x**2/d**2) - 10*d**5*e**2*x**
2*sqrt(1 - e**2*x**2/d**2) + 5*d**3*e**4*x**4*sqrt(1 - e**2*x**2/d**2)), True))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

integrate((x*e + d)*x^3/(-x^2*e^2 + d^2)^(7/2), x)

________________________________________________________________________________________

Mupad [B]
time = 2.66, size = 78, normalized size = 0.87 \begin {gather*} \frac {\sqrt {d^2-e^2\,x^2}\,\left (-2\,d^4+2\,d^3\,e\,x+3\,d^2\,e^2\,x^2-3\,d\,e^3\,x^3+3\,e^4\,x^4\right )}{15\,d^2\,e^4\,{\left (d+e\,x\right )}^2\,{\left (d-e\,x\right )}^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x)

[Out]

((d^2 - e^2*x^2)^(1/2)*(3*e^4*x^4 - 2*d^4 - 3*d*e^3*x^3 + 3*d^2*e^2*x^2 + 2*d^3*e*x))/(15*d^2*e^4*(d + e*x)^2*
(d - e*x)^3)

________________________________________________________________________________________